Вы находитесь здесь: Главная > Магнитное поле > Магнитные действия электрического тока

Магнитные действия электрического тока

<— Этот удивительный мир

Магнитные действия электрического токаРанее мы говорили о причинах возникновения и природе магнитно-силовых линий (МСЛ), возникающих вблизи постоянных магнитов и проводников с током. В предыдущей статье я высказал гипотезу, о том, что магнитное поле вблизи постоянного магнита или проводника с током представляет собой интерференционную картину из МСЛ различной интенсивности. В термин МСЛ я вкладываю определенный физический смысл. Это не просто геометрические линии, а часть сложной структуры магнитного поля, состоящая, в свою очередь, из микроскопических волн, обладающих магнитными свойствами. При воздействии магнитного поля постоянного магнита на кусок железа или на железные опилки это поле является внешним (ВМП), по отношению к куску железа или железным опилкам. ВМП вначале индуцирует собственное магнитное поле (СМП) в куске железа или в железных опилках, а затем уже взаимодействует с этим СМП, посредством их МСЛ.

Аналогично это касается и проводников с током. Пока в проводниках замкнутой цепи  есть ток (а значит, есть СМП вокруг проводников), ВМП взаимодействует с СМП проводников посредством их МСЛ. Когда в проводнике нет тока, а значит, и нет МСЛ вокруг проводника, ВМП не действует на сам проводник, хотя его МСЛ пронизывают микроструктуру проводника.

В этой статье поговорим о взаимодействии магнитов и проводников с током посредством МСЛ.

Вспомним, что известно об этом из научных публикаций. Как уже было сказано ранее, Г.Эрстед в 1820 году  экспериментально продемонстрировал  взаимодействие магнита и проводника с током. Поведение магнитной стрелки вблизи проводника с постоянным током говорило о том, что вокруг этого проводника находится магнитное поле. Впоследствии была установлена тесная связь магнитного поля с током. Обобщая свои опыты, Эрстед показал, что наличие тока в проводниках замкнутой цепи, какова бы не была их природа, всегда влечет за собой образование МСЛ магнитного поля вокруг проводников этой цепи. Именно взаимодействие МСЛ проводника с МСЛ магнитной стрелки заставляет ее поворачиваться одним из своих полюсов к проводнику с током.

В 1821 году французский ученый А.Ампер установил взаимосвязь электричества и магнетизма в случае  прохождения по цепи электрического тока и отсутствия такой взаимосвязи у статического электричества.

Проводник над магнитом

Рис. 1

Чтобы проверить является ли указанное взаимодействие МСЛ обоюдным, т.е. действует ли магнит на проводник с током, был проведен следующий опыт (рис.1). Над неподвижным постоянным магнитом подвешивали проводник с постоянным током. Оказалось, что проводник с током ведет себя аналогично магнитной стрелке.

Полосовой магнит и проводник с током

Рис. 2

Интересен опыт с гибким проводником, который расположен в непосредственной близости к параллельно полосовому магниту. Когда в проводнике появлялся ток, то он обвивался вокруг полосового магнита (рис.2). Это говорило о том, что вокруг каждого участка проводника с током появляются МСЛ, которые взаимодействуют с МСЛ полосового магнита.

Такой же вывод был сделан и Д.Араго, который  в своем опыте обратил внимание на то, что если погрузить изолированный провод, по которому идет ток, в металлические опилки, то опилки пристают к нему по всей длине как к магниту. При выключении тока опилки отпадают.

Взаимодействие двух проводников с током

Рис. 3

Аналогичные взаимодействия были установлены между двумя, находящимися вблизи друг от друга, проводниками с постоянным током. В опыте (рис.3) два параллельных проводника установлены на небольшом расстоянии друг от друга. Эти проводники притягивались или отталкивались в зависимости от его направления. В этих и других опытах было показано, что магнитное действие электрического тока аналогично взаимодействию двух магнитов.

Рассмотренные нами опыты по взаимодействию магнитных полей показывают, что все взаимодействия и в случае с постоянными магнитами, и между постоянными магнитами и проводниками с током, а также двумя проводниками с током между собой сводятся к взаимодействию магнитных полей посредством их МСЛ. С учетом того, что на практике большое количество технических устройств создано на основе взаимодействия магнитных полей, в частности, на основе взаимодействия магнитных полей и проводников с током, следует привести некоторые опыты, которые понадобятся нам позднее для объяснения некоторых явлений в этой области.

Подковообразный магнит и проводник

Рис. 4

Рассмотрим следующий опыт   по взаимодействию магнитного поля и проводника с током. В магнитном поле подковообразного магнита расположен прямолинейный участок проводника с током. (рис.4). Изменяя направление тока  в проводнике, и меняя его расположение  относительно направления магнитного поля можно определить направление силы, действующей на проводник. При включении тока (в зависимости от его направления) проводник может втягиваться в магнит или выталкиваться из магнита. При этом магнитное поле действует на проводник с током только тогда, когда он расположен перпендикулярно направлению МСЛ поля. При параллельном расположении проводника и МСЛ поля взаимодействия не происходит.

Сила, действующая на проводник с током в магнитном поле, определяется из соотношения:

F= k*H*I*L*sina,

где H- напряженность магнитного поля, I-сила тока, L- длина прямолинейного участка проводника, а- угол между H и I.

Это соотношение носит название закона Ампера. На практике в большинстве случаев приходится иметь дело с проводниками различной формы, по которым протекает ток, и действие магнитного поля на такие проводники с током имеет довольно сложный характер. Посмотрим, как магнитное поле действует на простые формы проводников с током в виде витка или соленоида.

Виток с током, как показали опыты, подобен плоскому магниту, полюса которого (северный и южный) находятся на противоположных плоскостях витка. Полюса перпендикулярны к плоскостям витка с током. Определить какой из этих полюсов северный, а какой южный можно по правилу буравчика. Северный полюс витка с током определяется по направлению его рукоятки вращения – аналогия направления МСЛ. Если ввинчивать буравчик по направлению тока, то выходящие из плоскости витка МСЛ укажут  на северный полюс. Магнитные полюса соленоида определяют таким же образом.

Действие магнитного поля на рамку с током

Рис. 5

Внешнее магнитное поле, воздействуя на виток с током, стремится повернуть его так, чтобы МСЛ витка были параллельны МСЛ внешнего магнитного поля. Для анализа сил, действующих на виток с током, удобно сделать его прямоугольной формы. В этом случае, предположим, что две стороны витка параллельны направлению магнитного поля, а две другие перпендикулярны (рис.5). На первые две стороны витка магнитное поле не действует, а на две другие стороны витка действуют равные и противоположные магнитные силы, создаваемые противоположным направлением тока. Эти силы образуют вращающий момент, поворачивающий виток с током плоскостью перпендикулярно к направлению магнитного поля. На две другие стороны витка магнитное поле действует двумя равными, но противоположно направленными силами, которые стремятся деформировать (сжать или растянуть) виток в зависимости от направления тока.

На основании результатов приведенных и других опытов можно сделать следующие выводы.

-магнитное поле действует на прямолинейный участок проводника с током с силой, направление которой перпендикулярно к направлению тока и направлению МСЛ магнитного поля;

-магнитное поле создает вращающий момент, который стремится повернуть виток или соленоид так, чтобы направление от южного полюса витка или соленоида к северному полюсу совпало с направлением поля;

-магнитное поле не действует на проводники с током, расположенные вдоль направления МСЛ;

-МСЛ это не просто геометрические линии, а часть сложной структуры магнитного поля, состоящая, в свою очередь, из микроскопических волн, обладающих магнитными свойствами.

О природе и особенностях этих и других сил мы поговорим в следующей статье.

<— Устройство электрона                                                Силы Лоренца —>

Поделиться в соц. сетях

Опубликовать в Google Plus

Tags:

Оставить комментарий