Вы находитесь здесь: Главная > Гравитация > Эффект Доплера в космологии

Эффект Доплера в космологии

Эффект Доплера

Рис.1

В предыдущей публикации приведены некоторые примеры, из которых можно сделать вывод о том, что Эфир в природе существует. Приняв этот тезис о существовании Эфира, как среды, заполняющей пространство Вселенной, можно в некоторой степени приблизиться к истинному пониманию, происходящих во Вселенной процессов, явлений, которые до настоящего времени академическая наука объяснить не может. Одним из таких удивительных явлений в природе является процесс распространения светового излучения в пространстве Вселенной.

Анализ публикаций о распространении света в пространстве (Вакууме-Эфире) позволяет сделать вывод о том, что одной из важных и, одновременно, сложных проблем в этой теме является (технология) метод измерения скорости света. Наиболее распространенным в этом плане является эффект Доплера (ЭД), который используется в устройстве многих измерительных приборов, широко применяемых для измерения скорости различного рода излучений.

На мой взгляд применение ЭД для измерения скорости электромагнитных излучений в пространстве и светового излучения, в частности, является весьма спорным, не достаточно обоснованным и автоматически переносить методику (технологию) этих измерений из земных условий в космические нельзя. Этот «перенос» происходит возможно потому, что ЭД получил широкое распространение в земных условиях и до настоящего времени применяется достаточно успешно. На Рис.1 показано примерное распространение звуковых волн в воздухе: а) неподвижный автомобиль; б) движущийся автомобиль.

Эффект Доплера был открыт в 1842г. К. Доплером в результате проведения многочисленных экспериментов по измерению скорости распространения звука в воздухе от двигающегося относительно приемника источника звука с различными скоростями. Эти опыты были перепроверены многими исследователями, по результатам экспериментов которых была подтверждена правильность выводов К. Доплера.

В чем же суть ЭД? Википедия дает следующее определение ЭД: «Эффект Доплера – изменение частоты и, соответственно, длины волны излучения, воспринимаемое наблюдателем (приемником), вследствие движения источника излучения и/или движения наблюдателя (приемника)».

Несколько подробнее объясняют суть эффекта авторы многих публикаций в интернете: «Когда приемник звука приближается к неподвижному источнику звуковых волн, за единицу времени он встречает на своем пути больше волн, чем если бы он находился в неподвижном состоянии. То есть в процессе движения к источнику звука приемник (наблюдатель) воспринимает более высокую частоту и слышит более высокий тон. Когда же приемник удаляется, число пересеченных волн уменьшается, и звук кажется более низким». И в том (Википедия) и в другом случае, которые тиражируются в большинстве публикаций с различными вариациями, имеем традиционную констатацию факта, при этом не видя отличия в разных вариантах относительного движения источника и приемника.

На первый взгляд, приведенные выше объяснения совпадают с опытными данными, а созданный математический аппарат с приемлемой погрешностью подтверждает воспроизводимость экспериментальных результатов. Но такие объяснения, как говорят, «валят все в общую кучу», тем самым искажая истинный физический смысл самого эффекта, применяемого в каждом отдельном случае. Дело в том, что действительно частота звуковых волн изменяется, увеличивается, если источник звука приближается к приемнику (наблюдателю) и уменьшается, когда источник звука удаляется от наблюдателя, но за счет чего это происходит?

На самом деле следует различать случаи, когда приемник движется к источнику звука, не возмущая при этом среду – воздух и, когда приемник (наблюдатель) неподвижен, а источник звука приближается к приемнику. Рассмотрим каждый из этих случаев более подробно. Первый случай, когда приемник движется навстречу источнику звука и второй, когда источник звука движется навстречу неподвижному приемнику.

В первом случае приемник, не возмущая среды, движется к неподвижному автомобилю с работающим двигателем. Приемник движется относительно среды, в которой частота колебаний на измеряемом отрезке пути примерно одинакова и, следовательно, приемник движется относительно колебаний среды. В этом случае чем больше скорость приемника, тем большее число колебаний будет фиксировать детектор приемника. При этом не будем принимать во внимание уменьшение скорости звука с расстоянием от источника в зависимости от параметров среды – воздуха (вязкость, теплопроводность и др.).

Движение приемника к автомобилю

Рис.2

Рассмотрим конкретный пример, когда приемник движется навстречу источнику звука в воздушной среде, частота колебаний звуковых волн в которой составляет, например, 50 кол/с, а приемник движется в направлении источника со скоростью, которая соответствует 10-ти колебаниям в секунду. Означает ли это, что прибор (приемник) будет фиксировать 60 колебаний в секунду? Да, в соответствии с эффектом Доплера, это так. Приемник будет фиксировать увеличение частоты звука. При этом, не следует забывать, что измерение будет происходить на достаточно коротком расстоянии между источником звука и приемником. Это установленный экспериментально и много раз проверенный факт не подлежит сомнению. В научном мире, фиксируемые приемником результаты объясняют тем, что движущийся приемник пересекает большее количество звуковых волн, относительно того, как если бы он был неподвижен относительно источника звука. Тон звука, как и частота, будет изменяться по мере приближения приемника к автомобилю и будет становиться сильнее, чем ближе к работающему автомобилю приемник звука. На Рис.2 приемник (наблюдатель) движется к неподвижному работающему автомобилю .

А теперь рассмотрим случай, когда приемник неподвижен, а источник звука, например, автомобиль движется к приемнику (наблюдателю). По логике предыдущего случая, чтобы приемник зафиксировал увеличение числа колебаний звука, колеблющийся воздух должен перемещаться относительно неподвижного приемника вместе с автомобилем (источником звука). Только в этом случае, по аналогии с предыдущим, приемник будет фиксировать увеличение числа колебаний звука с увеличением скорости автомобиля. Но такой случай практически не реален.

Приемник измеряет частоту колебаний воздуха перед движущемся автомобилем. Наблюдатель утверждает, что приемник фиксирует количество колебаний воздуха, число которых (как и в первом случае) увеличивается за счет перемещения (движения) источника звука в направлении к приемнику. Можно ли в этом случае сказать, что скорость звука, исходящего от движущегося автомобиля больше, чем от неподвижного автомобиля с работающим двигателем. В действительности автомобиль один и тот же, частота звука в воздухе от двигателя та же, скорость автомобиля на измеряемом отрезке пути не меняется. Зависит ли скорость звука в воздухе от скорости движения автомобиля, если воздух при этом не изменяет свои параметры?

Но в том то и дело, что воздух, в процессе движения автомобиля (источника звука) изменяет свои параметры, а именно, изменяется плотность воздуха перед автомобилем и, наоборот за автомобилем происходит разряжение воздуха. В этом случае, при возмущении среды перед автомобилем появляется плотный слой воздуха — зона уплотнения, а за автомобилем – зона разряжения воздуха. В обоих зонах скорость звука (частота) от движущегося автомобиля будет отличаться от скорости звука (шума) неподвижного автомобиля. Каждая из этих зон имеет свои размеры, после которых воздух приходит в «норму». и чем больше скорость автомобиля, тем больше будет влияние этих зон на скорость звука.

При этом, из-за изменения плотности воздуха в указанных зонах меняется его тональность, как это происходит в случае приближающегося к наблюдателю автомобиля или локомотива. Похожие эксперименты подтвердили, что тональность звукового сигнала может изменяться на разных расстояниях приемника от автомобиля, если работающий автомобиль находится в неподвижном состоянии.  Это связано с замедлением скорости звука из-за сопротивления (вязкости) воздуха.

Ударная волна

Рис.3

Известно, что чем больше плотность среды, тем больше скорость звука в этой среде. И, наоборот, в разреженной среде скорость звука становится меньше. Именно это увеличение частоты, числа колебаний воздуха перед автомобилем может влиять на результаты измерений прибора-приемника. (Для справки, скорость звука в воздухе составляет примерно 330 м/с, а в воде – 1500 м/с.) Чем больше скорость автомобиля, тем больше плотность воздуха перед ним, и тем больше скорость распространения (частота) звука в воздухе перед движущимся автомобилем. Этот эффект наиболее заметен, когда перед летательным аппаратом в атмосфере воздуха образуется так называемая ударная волна, в которой плотность воздуха достигает значительных величин. С другой стороны, чем больше скорость источника звука, тем большее разрежение среды – воздуха за источником. В рассматриваемом случае в формуле ЭД величина скорости движения источника звука должна быть функцией, по меньшей мере одного параметра — плотности среды. На Рис.3 показан примерный вид ударной волны перед летательным аппаратом.

Еще сложнее ситуация, когда и приемник, и автомобиль движутся навстречу друг другу одновременно. Но в настоящей публикации этот случай не рассматривается. В этой статье важно ответить на вопрос можно ли использовать ЭД для измерения скорости распространения электромагнитных колебаний. Приведенный выше, достаточно подробный анализ применения ЭД для измерения скорости звука в земных условиях показывает, что даже в этом, казалось бы, простом деле к этой теме надо подходить более внимательно, а тем более нельзя автоматически переносить ЭД на измерения скоростей электромагнитных излучений и, в частности, скорости света и, если можно, то при каких условиях.

Отрицая факт существования Эфира в природе, А. Эйнштейн утверждал, что свет распространяется в «пустом пространстве» – Вакууме с максимально возможной в природе постоянной скоростью равной, 300т. км/с и не зависит от скорости движения источника света. Если следовать логике Эйнштейна, то ЭД нельзя применять для измерения скорости света (как электромагнитного излучения) ввиду отсутствия среды и постоянной скорости света. Несмотря на утверждение Эйнштейна, астрономы, астрофизики широко применяют ЭД в космологии для измерения скорости электромагнитных излучений, тем самым подтверждая негласно существование во Вселенной среды для распространения света. Ссылаясь на результаты, полученные с использованием ЭД, ученые, исследователи подтверждают теорию Большого Взрыва, расширение Вселенной, разбегание Галактик, и утверждают, что это хорошо согласуется с результатами экспериментальных данных, полученных с использованием ЭД и с результатами спектральных анализов светового излучения звезд.

Существование Эфира-Вакуума, как среды, пронизывающей все пространство Вселенной, в корне меняет дело (изменяет ситуацию) и делает возможным применение ЭД для измерения скорости электромагнитных излучений (колебаний). При распространении света от далеких звезд в Эфире прибор (наблюдатель) фиксирует частоту колебаний Эфира, так как наблюдатель не может измерять информацию (излучение) непосредственно от источника излучения, а может измерять только «вторичную» информацию, доносимую средой, о чем я писал в предыдущей публикации.

Электромагнитное излучение

Рис.4

Предположим, что приборы посредством ЭД действительно фиксируют колебания Эфира, связанные с частотой светового излучения. Но на огромных расстояниях происходит замедление скорости распространения света, что характерно для распространения излучений в любой среде. Это будет происходить и в случае приближения к наблюдателю источника света, и в случае его удаления от наблюдателя на большое расстояние. (По-видимому, при удалении источника от наблюдателя замедление скорости излучения будет проявляться больше). Но как, используя ЭД, определить удаление это или приближение источника излучения относительно наблюдателя.  Свет при наличии Эфира доходит до нас с замедлением в обоих случаях и в обоих случаях мы получаем «красное смещение» в спектре. На Рис.4 показано как, по мнению официальной науки, распространяется излучение света в случае его удаления/приближения относительно приемника (наблюдателя).

По утверждению А. Фридмана: «Однородный мир не может находится в покое и должен либо расширяться, либо сжиматься». Именно, А. Фридман выдвинул гипотезу о расширении Вселенной в 1922 году.

Однако, нельзя не учитывать тот факт, что основой существования Вселенной является относительное движение материальных тел в пространстве и, что движение всех тел во Вселенной происходит по криволинейным траекториям. Все материальные тела находятся в непрерывном сложном движении относительно друг друга. Представим себе, что наблюдатель с приемником находится на Земле или в около земном пространстве. При этом, Земля движется вокруг Солнца, Солнечная система движется в галактике и т.д. В таком же сложном движении находится и источник излучения, которое фиксируется приемником на Земле. И нет никакой уверенности в том, что наблюдатель в небольшом промежутке времени (время измерений) удаляется от источника или приближается к источнику излучения. Тем более как утверждают астрономы, свет от таких далеких галактик доходит до Земли многие миллионы световых лет, и в каком положении (движении) звезда находилась в тот момент относительно сегодняшнего положения приемника сказать практически невозможно. Нельзя сделать однозначный вывод и о том, есть ли расширение Вселенной или разбегание галактик в настоящий момент времени, поскольку неизвестно, движется ли приемник к источнику излучения или наоборот, или они движутся в одном направлении. В свете выше сказанного ЭД следует весьма и весьма избирательно применять к измерению скорости распространения электромагнитных колебаний, чтобы не вводить в заблуждение себя и других исследователей. И тем более делать какие-либо выводы по результатам этих измерений.

А то, что приборы (спектрометры) фиксируют «красное и голубое смещение» волн в спектре не говорит достоверно о том, что Вселенная расширяется, а Галактики разбегаются на основании проведенных измерений.

С точки зрения существования Эфира, как среды для распространения света, «красное смещение» в спектрах можно объяснить элементарным замедлением скорости света с расстоянием от источника излучения.

Выводы.

1.Отмечено, что приемник (наблюдатель) в действительности измеряет частоту (колебания) излучения не от самого источника, а частоту (колебания), воспроизводимую средой, в которой распространяется это излучение.

2.Одним из условий применимости эффекта Доплера для измерения скорости распространения электромагнитных излучений является наличие в пространстве среды – Эфира.

3.Утверждение о том, что эффект Доплера применим в космологии есть негласное подтверждение существования Эфира в пространстве Вселенной.

4. Результаты по измерению скорости света от далеких галактик, полученные с использованием эффекта Доплера и спектрального анализа можно объяснить замедлением скорости света с расстоянием при его взаимодействии с Эфиром.

5.По результатам измерений, полученных с использованием эффекта Доплера и спектрального анализа нельзя однозначно утверждать, что Вселенная расширяется.

 

Примечание. Продолжение в следующей публикации.

Поделиться в соц. сетях

Опубликовать в Google Plus

Tags:

Оставить комментарий